Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Gaseous and Particulate Emissions from a Vehicle with a Spark-Ignition Direct-Injection Engine

1999-03-01
1999-01-1282
Particulate and gaseous emissions from a Mitsubishi Legnum GDI™ wagon were measured for FTP-75, HWFET, SC03, and US06 cycles. The vehicle has a 1.8-L spark-ignition direct-injection engine. Such an engine is considered a potential alternative to the compression-ignition direct-injection engine for the PNGV program. Both engine-out and tailpipe emissions were measured. The fuels used were Phase-2 reformulated gasoline and Indolene. In addition to the emissions, exhaust oxygen content and exhaust-gas temperature at the converter inlet were measured. Results show that the particulate emissions are measurable and are significantly affected by the type of fuel used and the presence of an oxidation catalyst. Whether the vehicle can meet the PNGV goal of 0.01 g/mi for particulates depends on the type of fuel used. Both NMHC and NOx emissions exceed the PNGV goals of 0.125 g/mi and 0.2 g/mi, respectively. Meeting the NOx goal will be especially challenging.
Technical Paper

Total Fuel Cycle Impacts of Advanced Vehicles

1999-03-01
1999-01-0322
Recent advances in fuel-cell technology and low-emission, direct-injection spark-ignition and diesel engines for vehicles could significantly change the transportation vehicle power plant landscape in the next decade or so. This paper is a scoping study that compares total fuel cycle options for providing power to personal transport vehicles. The key question asked is, “How much of the energy from the fuel feedstock is available for motive power?” Emissions of selected criteria pollutants and greenhouse gases are qualitatively discussed. This analysis illustrates the differences among options; it is not intended to be exhaustive. Cases considered are hydrogen fuel from methane and from iso-octane in generic proton-exchange membrane (PEM) fuel-cell vehicles, methane and iso-octane in spark-ignition (SI) engine vehicles, and diesel fuel (from methane or petroleum) in direct-injection (DI) diesel engine vehicles.
Technical Paper

Nitrogen Enriched Intake Air Supplied by High Flux Membranes for the Reduction of Diesel NOx Emissions

1998-02-23
980177
Exhaust emissions consisting of oxides of nitrogen (collectively known as NOx) from internal combustion engines present a serious environmental problem. Although the problem exists for both gasoline and diesel engines, the problem is more severe for the diesel engine. NOx formation in an engine depends strongly on flame temperature, and flame temperature is dependent upon the composition of the fuel and the intake air. The concept is to develop and test copolymer modules for Nitrogen Enriched Air (NEA) supply to diesel engines. The objective is to minimize NOx production from diesel engine emissions without a significant loss of fuel efficiency or a significant increase in carbon monoxide and smoke related emissions. In the present study, a module using the latest membrane technology was designed, tested and fabricated. The modules were installed in a diesel engine test stand and tests were run. The NOx level from the test engine using standard air was established.
Technical Paper

Oil Management Module for Lower Engine

1998-02-01
980733
Managing engine oil temperatures and extending service intervals has caused many engine designers to consider crankshaft windage trays. With benefits such as reducing oil aeration and oil temperature while improving engine performance, windage trays have long been used in performance engines. Most automotive engines would benefit from the introduction of windage trays. This paper outlines a new approach in the form of an oil management module for the lower engine, a one piece glass-reinforced nylon composite system which integrates a windage tray with other oil system components such as: pan gasket, pick-up/strainer, baffling and sensor interface. The oil management module is very near to reality since it is the integration of proven nylon composite applications and not a totally new application.
Technical Paper

The Prospects for Electric and Hybrid Electric Vehicles: Second-Stage Results of a Two-Stage Delphi Study

1996-08-01
961698
A two-stage Delphi study was conducted to collect information that would enable a technical and economic assessment of electric (EV) and hybrid electric (HEV) vehicles. The first-stage worldwide survey was completed in fall 1994 while the second-stage was completed by summer 1995. The paper reports results from the second round of the survey and the major differences between the two rounds. This second-stage international survey obtained information from 93 expert respondents from the automotive technology field. The second stage response provided the following key results. EVs will penetrate the market first followed by internal combustion engine powered HEVs while gas turbine and fuel cell powered HEVs will not have any significant penetration until after 2020. By 2020 EVs and internal combustion engine powered HEVs are projected to have approximately a 15% share of the new vehicle market.
Technical Paper

The Effects of Oxygen-Enriched Intake Air on FFV Exhaust Emissions Using M85

1996-05-01
961171
This paper presents the results of emission tests of a flexible fuel vehicle (FFV) powered by an SI engine, fueled by M85, and supplied with oxygen-enriched intake air containing nominal 21%, 23%, and 25% oxygen (by volume). Emission data were collected by following the standard federal test procedure (FTP) and U.S. Environmental Protection Agency's (EPA's) “off-cycle” test EPA-REP05. Engine-out total hydrocarbons (THCs) and unburned methanol were considerably reduced in the entire FTP cycle when the oxygen content of the intake air was either 23% or 25%. However, CO emissions did not vary appreciably, and NOx emissions were higher. Formaldehyde emissions were reduced by about 53% in bag 1, 84% in bag 2, and 59% in bag 3 of the FTP cycle when 25% oxygen-enriched intake air was used.
Technical Paper

Computer Simulations of Closed Liquid Metal Combustor Fluid Flow

1992-08-03
929368
Flash radiography is used to study the internal processes of closed liquid metal combustion systems. Future projects with the combustors include placing small hollow spheres within the active bath to trace fluid flow and obtain spatial and temporal data. A ray tracing program which employs simplified Monte Carlo methods has been developed for use as a predicting tool for radiographic images produced during testing. A complex focal spot is characterized by either a monochromatic or polychromatic emission spectrum. The x-ray detection system is modeled by a planar detector having 100% efficiency. The code simulates the imaging of the small hollow spheres in the combustor for three dimensional localization from two dimensional projections. Still radiographic images of a mock combustor and a plane of cylindrical objects are used to compare edge detection and object location for real and simulated images.
Technical Paper

A Combined Model for High Speed Valve Train Dynamics (Partly Linear and Partly Nonlinear)

1990-09-01
901726
A numerical modeling technique is proposed for computer simulations of high speed valve train dynamics. The dynamic terms in the valve spring reaction forces are calculated using linear vibration theory for given kinematic valve motions. Because the spring dynamics are analyzed before the time stepping integration, spring surge phenomena can be included without using additional computer time. Consequently, valve train dynamics can be simulated very quickly without noticeable errors in accuracy. The experimental results prove the computer model developed here is accurate and also computationally efficient.
Technical Paper

Cylinder Pressure Analysis of a Diesel Engine Using Oxygen-Enriched Air and Emulsified Fuels

1990-09-01
901565
Analytical studies of oxygen-enriched diesel engine combustion have indicated the various benefits as well as the need for using cheaper fuels with water addition. To verify analytical results, a series of single-cylinder diesel engine tests were conducted to investigate the concepts of oxygen enriched air (OEA) for combustion with water emulsified fuels. Cylinder pressure traces were obtained for inlet oxygen levels of 21% to 35% and fuel emulsions with water contents of 0% to 20%. Data for emulsified fuels included no. 2 and no. 4 diesel fuels. The excess oxygen for the tests was supplied from compressed bottled oxygen connected to the intake manifold. The cylinder pressure data was collected with an AVL pressure transducer and a personal computer-based data logging system. The crank angle was measured with an optical encoder. In each data run, 30 consecutive cycles were recorded and later averaged for analysis.
X